Направление протекания химических реакций. Критерии направления самопроизвольного протекания химических реакций Как протекает химическая реакция

Все самопроизвольные процессы всегда сопровождаются понижением энергии системы.

Таким образом, направление самопроизвольного протекания процесса в любых системах определяет более общий принцип – принцип минимума свободной энергии.

Для характеристики процессов, протекающих в закрытых системах, были введены новые термодинамические функции состояния: а) свободная энергия Гиббса

G = ∆H - T S (р , Т = const); (17)

б)свободная энергия Гельмгольца

F = ∆U - T S (V ,T = const). (18)

Энергии Гиббса иГельмгольца измеряются в единицахкДж/моль.

Свободная энергия это как раз та часть энергии, которая может быть превращена в работу (см. ур.10). Она равна максимальной работе, которую может совершить система G = - А макс .

В реальных условиях А макс никогда не достигается, так как часть энергии рассеивается в окружающую среду в виде тепла, излучения, тратится на преодоление трения и т.д., что и учитывается введением КПД.

Таким образом, 1) самопроизвольно могут протекать только те процессы, которые приводят к понижению свободной энергии системы; 2) система приходит в состояние равновесия, когда изменение свободной энергии становится равным нулю.

Вычисления изменений функции Гиббса (Гельмгольца), или свободной энергии, дают возможность сделать однозначные выводы о способности химических реакций к самопроизвольному протеканию в данных условиях.

Протекание самопроизвольных процессов всегда сопровождается уменьшением свободной энергии системы (DG < 0 или DF < 0).

Энергетические диаграммы, отвечающие термодинамически запрещенным, равновесным и самопроизвольным химическим процессам, представлены на рис.4.

ΔG , кДж/моль

Продукт ∆G > 0

термодинамически

Запрещенный процесс

Продукт

Исх. равновесие ∆G = 0

Продукт

G < 0

Самопроизвольный процесс

координата реакции Х

Рис. 4. Энергетические диаграммы термодинамически запрещенных, равновесных и самопроизвольных химических процессов

Условиями термодинамического равновесия в закрытой системе при различных условиях ведения процесса являются:

Изобарно-изотермические (р = const, T = const): ΔG = 0,

Изохорно-изотермические (V = const, T = const): ΔF = 0.

Таким образом, единственным критерием самопроизвольности химических процессов служит величина изменения свободной энергии Гиббса (или Гельмгольца), которая определяется двумя факторами: энтальпийным и энтропийным

G = ∆H - T S ;

ΔF = ∆U - T S .

Большинство химических процессов является результатом действия двух факторов: 1) стремление системы перейти в состояние с меньшей энергией, что возможно при объединении частиц или создании частиц, обладающих меньшим запасом внутренней энергии (или энтальпии); 2) стремление системы к достижению состояния с более высокой энтропией, что отвечает более беспорядочному расположению частиц.

При низких температурах, когда тепловое движение частиц замедляется, преобладает первая тенденция.

С ростом температуры энтропия возрастает (см.рис. 2 и 3) и начинает превалировать вторая тенденция, т.е. стремление к достижению такого состояния системы, которое характеризуется большей неупорядоченностью.

При очень высоких температурах не может существовать ни одно химическое соединение. Любые соединения в этих условиях переходят в газообразное состояние и распадаются (диссоциируют) на свободные атомы, а при температурах плазмы (Т > 10000 К) - на ионы, электроны и свободные радикалы, что соответствует наибольшей неупорядоченности системы, а следовательно, и максимальной энтропии.

Для определения, какой из факторов энтальпийный или энтропийный являются определяющими в данных условиях ведения процесса, производят сравнение абсолютных величин:

÷ ∆H ÷ > ÷ T S ÷ – определяющим является энтальпийный фактор,

÷ ∆H ÷ < ÷ T S ÷ - определяющим является энтропийный фактор.

В химии наиболее часто пользуются величиной энергии Гиббса, так как большинство химических и биологических процессов протекают в открытых (р = р атм) или закрытых сосудах при постоянном давлении (р ¹ р атм) и поэтому в дальнейшем, чтобы не повторяться в отношении величины ΔF , если это специально не оговорено, мы будем оперировать величиной ∆G .

Для определения направления химического процесса типа аА + вВ = сС + дД, протекающего в стандартных условиях, величину ΔG хр можно рассчитать по значениям ΔH 0 298хр и DS 0 298хр, используя ур.19. Если температура процесса Т ≠ 298 К, то расчет ведут по ур. 20.

G 0 298хр = ΔH 0 298хр - 298∙DS 0 298хр, (19)

G 0 Т хр ≈ ΔH 0 298хр - T DS 0 298хр. (20)

Можно воспользоваться и таблицами стандартных термодинамических функций образования веществ ΔG ° 298обр. В этом случае ΔG ° 298хр реакции рассчитывают аналогично ΔН ° 298хр:

G 0 298хр = [с∆G 0 298обр(С) + д∆G 0 298обр(Д) ] – [а∆G 0 298обр(А) + в∆G 0 298обр (В) ]. (21)

Таким образом, чтобы определить, возможен или нет химический процесс в данных условиях, необходимо определить, каким будет знак изменений энергий Гиббса или Гельмгольца.

Часто требуется определить температуру, называемую температурой инверсии, выше или ниже которой реакция меняет свое направление на обратное. Температура инверсии определяется из условия равновесия реакции ∆G хр = 0 .

G хр = ΔH хр - T DS хр = 0 (22)

Т инв = ΔH хр / DS хр. (23)

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Определите возможное направление самопроизвольного протекания процесса при t = 100°С. Рассчитать температуру инверсии.

Si (к) + SiO 2(к) = 2SiO (к)

Рассчитаем величину DG ° 298 этой реакции. Воспользуемся табличными данными

H 0 298 , кДж/моль 0 -912 -438

S 0 298 , Дж/моль∙К 19 42 27

Н 0 298 хр = = 36 кДж;

S 0 298 хр = = -7 Дж/К;

G ° хр = ∆H 0 298 хр - T S 0 298 хр =36 - 373×(-7)×10 -3 = 38,6 кДж.

Видно, что величина ∆G ° хр положительна, и при 373 К реакция в прямом направлении протекать не может. Следовательно, SiO 2 устойчив в стандартных условиях.

Для того, чтобы узнать возможен ли в принципе переход SiO 2 в SiO при каких – либо других температурах, надо рассчитать температуру инверсии, при которой система находится в состоянии термодинамического равновесия, т.е. в условиях, когда ∆ G = 0.

Т инв = ∆ H ° 298 хр /∆ S ° 298 хр = 36/(-7.10 -3)= -5143 К.

Отрицательной температуры в шкале абсолютных температур не существует и, следовательно, ни при каких условиях переход двуокиси кремния в окись кремния невозможен.

Fe 3 O 4(к) + 4H 2(г) = 3Fe (к) + 4H 2 O (г)

Н ° 298 обр, кДж/моль -1118 0 0 -241,8

В соответствии со следствием из закона Гесса изменение энтальпии процесса равно:

Н ° 298 хр = 4∆Н ° 298 обр (Н 2 О) – ∆Н ° 298 обр (Fe 3 O 4) = 4(-241,8) - (-1118) = 150,8 кДж

Изменение энтальпии реакции в данном случае рассчитано на 3 моль железа, т.е. на 3 моль ∙ 56 г/моль = 168 г.

Изменение энтальпии при получении 1кг железа определяется из соотношения:

168 г Fe - 150,8 кДж;

1000 г Fe - Х кДж;

Отсюда Х = 897 кДж.

Определить верхний предел температуры, при которой может протекать процесс образования пероксида бария по реакции:

2BaO (к) + O 2(г) = 2BaO 2(к)

Изменение энтальпии и энтропии реакции образования пероксида бария имеют следующие значения:

Н ° 298 хр = 2∆Н ° 298 обр (ВаО 2) - (2∆Н ° 298 обр (ВаО) + ∆Н ° 298 обр (О 2))

Н ° 298 хр = -634,7∙2 - (-553,9∙2 + 0) = -161,6 кДж

S ° 298 хр = 2S ° 298 обр (ВаО 2) – (2S ° 298 обр (ВаО) + S ° 298 обр (О 2))

S ° = 77,5∙2 – (70,5∙2 + 206) = -191 Дж/К = - 0,191 кДж/К

Свободная энергия этого процесса выразится уравнением

G ° хр = -161,6 + 0,191×Т.

При стандартных условиях ∆G ° 298хр = -161,6 + 0,191×298 = -104,68 кДж. ∆G ° 298хр < 0 и реакция при стандартных условиях протекать может.

Температуру инверсии можно найти из соотношения ∆G ° = 0.

G ° = -161,6 + 0,191Т = 0

Отсюда Т = - 161,6 - 0,191 = 846,07 К

Ниже температуры 846,07 К, процесс образования BaO 2 может быть реализован.

Вычислить изменение энтропии при испарении 250 г воды при 25 °С, если мольная теплота испарения воды при этой температуре равна 44,08 кДж/моль.

РЕШЕНИЕ. При испарении энтропия вещества возрастает на величину

S исп = DН / Т.

250 г воды составляют 250 г/18 г/моль = 13,88 моль. Отсюда теплота испарения воды равна: 13,88 моль ∙ 44,08 кДж/моль = 611,83 кДж.

Изменение энтропии при испарении 250 г воды при Т = 25 +273 = 298 К равно

S исп = 611,83 / 298 = 2,05 кДж.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

СО (г) + Н 2 О (г) = СО 2(г) + Н 2(г)

Определить: а) ∆U ° 298 реакции; б) сколько граммов и сколько литров СО вступило в реакцию, если выделилось 14,66 кДж тепла (н.у.)?

СН 4(г) + 2О 2(г) = СО 2(г) + 2H 2 О (ж )

Определить; а) ∆U ° 298 реакции; б) сколько тепла выделится при сжигании 56 л метана (н.у)?

3. Для реакции СО (г) + С1 2(г) = COС1 2(г) , пользуясь табличными данными, рассчитать ∆Н ° 298 реакции. Вычислить: а) ∆U ° 298 реакции; б) сколько литров СО вступило в реакцию, если выделилось 338,13 кДж тепла (н.у.)?

2НС1 (г) + Са (тв) = СаС1 2(тв) + H 2(г) .

5. ∆Н ° 298 сгорания метана СН 4 равна - 891,6 кДж/моль. Вычислить: а) сколько тепла выделится при сгорании 1г метана; б) сколько тепла выделится при сгорании 5л метана (н.у.)?

6. Для реакции 2Сu (тв) + 1/2О 2(г) = Сu 2 О (тв) , ∆Н° 298 которой составляет -167,6 кДж, рассчитать: а)сколько литров кислорода вступило в реакцию, если выделилось 335,2 кДж тепла? б) ∆U ° 298 реакции.

7. ∆Н ° 298 реакцииCd (тв) + 1/2О 2(г) = CdО (тв) составляет -256,43 кДж.
Определить: а) ∆U ° 298 реакции; б) сколько молей Cd необходимо взять, чтобы выделилось 628 кДж тепла?

8. ∆Н ° 298 реакции 2Вi (тв) + 3/2О 2(г) = Вi 2 О 3 (тв) составляет -578,22 кДж.
Сколько тепла выделится при образовании 0,5 моль Вi 2 О 3 ?

9. По табличными значениями ∆Н ° 298 образования реагентов рассчитать ∆Н ° 298 сгорания метана СН 4 и ацетилена С 2 H 2 , если сгорание идет до СО 2(г) и H 2 О (ж) . Определить, какой газ обладает большей теплотворной способностью (кДж/кг).

10.Сожжены равные массы водорода, фосфора, графита и магния. В каком случае выделится больше тепла?

11. Сожжены равные объемы водорода Н 2 и ацетилена С 2 H 2 . При каком процессе выделится больше тепла и во сколько раз, если в результате реакции образуется СО 2(г) и Н 2 О (ж) ?

12. Алюмотермическое восстановление моноксида никеля описывается уравнением

3NiO (тв) +2Al (тв) = Al 2 O 3(тв) +3Ni (тв)

Пользуясь значениями ∆Н ° 298 обр реагентов, рассчитать ∆Н ° 298хр. Определить:

а) ∆Н ° 298 хр в кДж на 1 моль Ni; б) ∆Н ° 298 хр в кДж на 1 кг Ni;

13. Пользуясь табличными значениями, определить ∆Н ° 298 хр:

С 2 H 4(г) +ЗО 2(г) = 2СО 2(г) + 2Н 2 О (ж) . Какое количество тепла выделится, если в реакцию вступило: а) 14г этилена; б) 112л этилена (н.у.).

14. Пользуясь табличными данными, вычислить, сколько тепла поглотится при образовании 100 кг СаС 2 по реакции СаО (тв) + 3С (графит) = СаС 2(тв) + СО (г) .

15. Энтальпия образования хлористого водорода составляет -92,5 кДж/моль. Сколько тепла выделится при взаимодействии 1л (н.у.) водорода с хлором?

16. Сколько тепла выделится при сгорании 38 г сероуглерода по реакции CS 2(г) + ЗО 2(г) = СО 2(г) + 2SO 2(г) ?

17. Разложение гремучей ртути протекает по уравнению

Hg(CNO) 2(тв) = Hg (ж) +2СО (г) +N 2(г) , ∆Н ° 298 хр = -364 кДж. Определить объем выделившихся газов и количество тепла при взрыве 1 кг Hg(CNO) 2 при н.у.

18. Сколько тепла выделится при взрыве 8,4 л гремучего газа (смесь О 2 и Н 2 в объемном соотношении 1: 2) при н.у., если в результате реакции образуется Н 2 О (ж) ?

19. Сколько тепла выделится при образовании 1 кг кремния по реакции

SiO 2(тв) + 2Mg (тв) = 2MgO (тв) + Si (тв) , если ∆Н ° 298 хр = -292 кДж.

20. Сколько тепла выделится при взаимодействии 1л (н.у.) водорода со фтором, если образование 1 г HF (г) сопровождается выделением 13,45 кДж тепла?

22. Сколько тепла выделится при восстановлении 8г СuО водородом с образованием Н 2 О (г) ?

23. Сколько тепла выделится при сгорании 112л (н.у.) водяного газа, состоящего из равных объемов водорода и оксида углерода (II), если в результате реакции образуется оксид углерода (IV) и водяной пар?

24. Вычислить количество тепла, выделившегося при взаимодействии 10 л аммиака (н.у.) с хлористым водородом по реакции: NH 3(г) + HCl (г) = NH 4 Cl (тв) .

25. Определить ∆Н ° 298 образования РН 3 по реакции

2PH 3(г) + 4O 2(г) = P 2 O 5(г) + ЗН 2 О (г) , если ∆Н ° 298 хр = -2829,74 кДж.

26. Вычислить ∆Н ° 298 образования диоксида кремния, если для реакции SiO 2(тв) +2Мg (тв) = 2МgO (тв) + Si (тв) , ∆Н ° 298 хр = -292 кДж.

27. Реакция горения метилового спирта протекает по уравнению

СН 3 ОН (ж) + 3/2О 2 (г) = СO 2(г) + 2Н 2 О (ж) . При этом сгорание 1 моля спирта сопровождается выделением 727,4 кДж тепла.

28. При сгорании некоторого количества н-бутана С 4 Н 10(г) выделилось 12,44 кДж тепла. Сколько н-бутана сгорело: а) граммов; б) литров, если ∆Н ° 298 сгорания этого вещества равно -2882,43 кДж/моль?

29. При восстановлении 80 г Fe 2 О 3(тв) алюминием выделилось 427,38 кДж тепла. Вычислить ∆Н ° 298 образования Fe 2 O 3 (тв) .

30. Для определения ∆Н ° 298 образования ZnОв калориметрической бомбе было сожжено 3,25 г металлического цинка, при этом выделилось 17,47 кДж тепла. Вычислить ∆Н ° 298 реакции окисления цинка кислородом.

31. При сгорании 3,6 г магния выделилось 90,5 кДж тепла. Рассчитать ∆Н ° 298 образования MgO.

32. При сгорании 11 г пропана С 3 Н 8 выделилось 556 кДж тепла. Рассчитать энтальпию образования С 3 Н 8(г) .

33. Реакция окисления аммиака в некоторых условиях протекает по уравнению 4NH 3(г) + 3O 2(г) = 2N 2(г) +6H 2 O (ж).

Образование 4,48 л азота при ну. сопровождается выделением 153,3 кДж тепла. Рассчитать ∆Н ° 298 химической реакции. Сколько тепла выделится при окислении 1 г аммиака?

34. Образование 1 г FeO (тв) сопровождается выделением 3,71 кДж тепла. Сколько тепла выделится при окислении кислородом 1 моль Fe (тв) ?

35. Вычислить ∆Н ° 298 следующего перехода: Н 2 О (ж) = Н 2 О (г) на основании данных для следующих реакций:

Н 2(г) + 1/2 О 2(г) = Н 2 О (г) , ∆Н ° 298 = -242,2 кДж,

Н 2 О (ж) = 1/2 О 2(г) + Н 2(г) , ∆Н ° 298 = +286,2 кДж.

36. Определить ∆Н ° 298 перехода ромбической серы в моноклиническую, если энтальпия сгорания ромбической серы составляет-297,96 кДж/моль, аэнтальпия сгорания моноклинической серы равна -300,53 кДж/моль.

37. ∆Н ° 298 образования НI (г) из кристаллического I 2 и газообразного Н 2 составляет 26 кДж/моль, а ∆Н ° 298 образования НI (г) из газообразных I 2 и Н 2 равна - 5,2 кДж/моль. Вычислить ∆Н ° 298 перехода I 2 (тв) = I 2 (г) .

2P (белый) + 3С1 2(г) = 2РС1 3(г) , ∆Н ° 298 = -559,4кДж,
РС1 3 (г) + С1 2(г) = РС1 5 (г), ∆Н ° 298 = -90,50 кДж.

39. Найти тепловой эффект реакции превращения 1 моля кислорода в озон, если 3As 2 O 3(тв) + 3 О 2(г) = 3 As 2 О 5 (тв) , ∆Н ° 298 = -1170,8 кДж,

3As 2 O 3(тв) + 2О 3 (г) = 3 As 2 O 5(тв) , ∆Н ° 298 = -886,2 кДж.

40. Определить расход тепла при разложении 1 кг Na 2 СO 3(тв) с образованием Na 2 O (тв) и СО 2 (г) , если известно, что:

Na 2 СО 3(тв) +SiO 2(тв) =Na 2 SiO 3(тв) + CO 2(г) , ∆Н ° 298 = 128,42 кДж,
Na 2 O (тв) + SiO 2(тв) = Na 2 SiO 3(тв) , ∆Н ° 298 = -207,40 кДж.

41. Пользуясь табличными значениями ∆G ° 298 образования веществ, определите возможное направление самопроизвольного протекания реакций: а) СО 2(г) + 2Н 2 О (ж) = СH 4(г) + 2О 2(г)

б) 2НВr (г) + С1 2(г) = 2НС1 (г) + Вr 2(ж) .

Не производя расчетов, определите знак ∆S ° 298 реакций.

42. При 25°С энтропия ромбической серы равна 31,98 Дж/моль×К, а энтропия моноклинической серы = 32,59 Дж/моль×К. Энтальпии сгорания ромбической и моноклинической серы соответственно равны -297,32 и - 297,57 кДж/моль. Определить ∆G ° 298 хр:

S (ромб) = S (монокл). Какая модификация серы более устойчива при данной температуре?

43. Определить, может ли данная реакция протекать в прямом направлении при стандартных условиях

Fе 3 О 4(тв) + 4Н 2 (Г) = 3Fe (тв) + 4Н 2 О(г)?

44. Получение синтез - газа (смесь оксида углерода (IV) и водорода) осуществляется по реакции СH 4(г) + Н 2 О (г) = СО (г) + ЗН 2 (г) . Определите:

а) экзо- или эндотермической является данная реакция;

б) увеличивается или уменьшается энтропия в ходе реакции;

в) в каком направлении самопроизвольно идет реакция в стандартных условиях?

45. В каком направлении будет самопроизвольно протекать реакция 2NO 2(г) = N 2 O 4(г) в стандартных условиях и при

температуре +227°С? Какой фактор, энтальпийный или энтропийный, будет определяющим при низких и высоких температурах?

46. В каком направлении будет самопроизвольно протекать данная реакция при температуре +1027°С?

СО (г) + Н 2 О (г) = СО 2 (г) + Н 2(г) .

Какой фактор, энтальпийный или энтропийный, будет определяющим при низких и высоких температурах?

48. Рассчитать, при какой температуре начинается реакция крекинга н-бутана по реакции С 4 Н 10 (г) = С 2 Н 6 (г) + С 2 Н 4 (г) . Энтальпийный или энтропийный фактор является определяющим при низких и высоких температурах?

49. На основании термодинамических данных для реакции

6С (графит) + 6Н 2(г) = С 6 Н 12 (г) определить:

а) в каком направлении самопроизвольно будет протекать эта реакция при температуре 298 К?

б) энтальпийный пли энтропийный фактор будет определяющим в этих условиях?

в) нагревание или охлаждение будет способствовать более полному протеканию прямой реакции?

50. По табличными значениям термодинамических величин участников следующих реакций

С (графит) + 2Н 2(г) = СН 4 (г) ,

2С (графит) + 2Н 2(г) = С 2 Н 4 (г) ,

2С (графит) + Н 2(г) = С 2 Н 2 (г) ,

определить:

а) какой из углеводородов можно получить синтезом из простых веществ при стандартных условиях;

б) какой из углеводородов можно синтезировать при повышенной температуре;

в) какой из углеводородов наиболее стоек к разложению при 298 К?

51. Написать уравнения реакций получения углеводородов:

СН 4(г) , С 2 Н 6(г) , С 3 Н 8(г) , С 4 Н 10(г) , С 5 Н 12(г) и С 6 Н 14(г) из простых веществ

(графит и водород) и по табличными значениям термодинамических величин ответить на вопросы:

а) возможен ли синтез этих веществ при стандартных условиях?

б) как изменяется устойчивость углеводородов в этом ряду?

в) в какой из реакций изменение энтропии будет наибольшим?

г) как повлияет увеличение температуры на возможность получения этих веществ?

52. Будет ли химически устойчива смесь сероводорода и кислорода при t = 25 °C и парциальных давлениях газов, равных 1 атм, если взаимодействие возможно по реакции:

2H 2 S (г) + О 2(г) = 2Н 2 О (г) + 2S (ромб) ?

53. Рассчитать температуру, при которой окислительная способность кислорода и хлора будет одинакова 4НС1 (г) + О 2(г) = 2Н 2 О (г) + 2C1 2(г). Какой из газов (О 2 или С1 2) будет проявлять более сильные окислительные свойства при низких температурах? Энтальпийный или энтропийный фактор будет определяющим при высоких и низких температурах?

54. На основании термодинамических данных реакции

ZnO (тв) + С (графит) = Zn + СО (г) определить:

а) возможно ли осуществить восстановление ZnO при стандартных условиях?

б) повышение или понижение температуры будет способствовать более глубокому протеканию данной реакции?

в) при какой температуре восстановительная активность Znи С (графит) будет одинакова?

г) чем обусловлено изменение энтропии в ходе реакции?

55. По табличным значениям термодинамических величин рассчитать температуру, при которой начинается пиролиз метана по реакции:

2СН 4(г) = С 2 H 4(г) +2 H 2(г) .

Какой из факторов, энтальпийный или энтропийный, является определяющим в направлении протекания данной реакции при низких и высоких температурах?

56. Для реакций:

ZnS (тв) + 2НС1 (ж) = H 2 S (г) + ZnCl 2(p) , ∆G ° 298 хр = -462,6 кДж,

РbS (тв) + 2НС1 (ж) = H 2 S (г) + РbС1 2(р) , ∆G ° 298 хр = +31,0 кДж.

указать, какой из сульфидов можно растворить в разбавленной соляной кислоте.

57. На основании следующих данных:

P (белый) + 3/2Сl 2(г) = PСl 3(г), ∆G ° 298 хр = -286,68 кДж,

P (белый) + 5/2С1 2 (г) = РС1 5 (г) , ∆G ° 298 хр = -325,10 кДж.

ответить на вопросы:

а) можно ли синтезировать хлориды фосфора из простых веществ при стандартных условиях?

6) повышение или понижение температуры будет способствовать более глубокому протеканию реакций?

в) какой из хлоридов фосфора более устойчив к разложению?

58. Исходя из значений ∆G ° 298 хр для следующих реакций:

Fe(OH) 2(тв) + l/4O 2(г) + 1/2Н 2 О (ж) =Fе(ОН) 3 (тв) , ∆G ° 298 хр = -92,18кДж,

Со(ОН) 2 (тв) +1/4О 2(г) + 1/2Н 2 О (ж) = Со(ОН) 3(тв) , ∆G ° 298 =-23,68 кДж,

Ni(ОН) 2 (тв) + 1/4О 2(г) + 1/2Н 2 О (ж) =Ni(ОН) 3(тв) , ∆G ° 298 = +22,88 кДж

определить:

а) какой из гидроксидов (II) или (III) каждого из элементов более устойчив при стандартных условиях;

б) какой из гидроксидов (III) обладает большей устойчивостью при ст. усл.;

в) какой из гидроксидов (II) наиболее устойчив к окислению;

г) какая степень окисления (+2 или +3) более характерна для Fe,Co, Ni при ст. усл?

59. На основании имеющихся данных:

С (графит) +2F 2(г) = СF 4(г) , ∆G ° 298 хр = -636,04 кДж,

С (графит) +2 Cl 2(г) = СCl 4(г) , ∆G ° 298 хр = -60,63 кДж,

С (графит) +2 Br 2(ж) = CBr 4(г) , ∆G ° 298 хр = 66,94 кДж,

С (графит) + 2I 2(тв) = СI 4(г) ∆G ° 298 хр = 124,86 кДж,

определить: а) возможность получения тетрагалидов углерода из простых веществ при ст.усл.; б) изменение степени сродства галогенов к углероду; в) какой из тетрагалидов наиболее устойчив при ст.усл.

60. Напишите уравнения реакций, соответствующих табличным значениям ∆G ° 298 обр гидридов (Н 2 Э) элементов VI группы (О, S, Se, Те) и сделайте следующие выводы:

а) как изменяется химическая активность этих элементов по отношению к водороду;

б) возможен ли синтез данных гидридов из простых веществ при ст. усл.;

в) в какой из этих реакций изменение энтропии будет наибольшим?

61. Напишите уравнения реакций, соответствующих табличным значениям ∆G ° 298 обр галогенводородов и сделайте следующие выводы:

а) возможен ли синтез данных соединений из простых веществ при ст. усл.;

б) как изменяется относительная устойчивость галогенводородов при ст.усл.;

в) какой из галогенов проявляет наиболее сильные окислительные свойства и какой из галогенводородов - восстановительные;

г) в какой из реакций изменение энтропии будет наибольшим?

62. На основании следующих данных для оксидов элементов VI(В) группы

СrО 3 МоО 3 WO 3

G ° 298обр, кДж/моль -507 -679 -763

сделайте вывод, как изменяется устойчивость высших оксидов указанных элементов при ст.усл.?

63. На основании следующих данных для соединений Мn, Тс, Re

Мn 2 О 7 Тс 2 О 7 Re 2 O 7

G ° 298 обр, кДж/ моль -545 -939 -1068

сделайте вывод об относительной устойчивости высших оксидов d - элементов VII группы.

64. Для реакций НClО (р) =НCl (р) +1/20 2(г) , ∆G ° 298 = -51,5 кДж,

НВrО (р) =НВr (р) +1/20 2(г) , ∆G ° 298 =-21,8кДж,

НIO (р) =НI (р) +1/20 2(г) , ∆G ° 298 = + 47,8кДж указать: а)какая из кислот будет наиболее устойчивой?

65.Определить, какой из оксидов, СО 2 , N 2 O 5 или SO 3 , в большей степени проявляет кислотные свойства:

G ° 298 хр = -134,0 кДж,

СаО (тв) + N 2 O 5(г) =Ca(NO 3) 2 (тв) ∆G ° 298 хр = -272,0 кДж,

СаО (тв) + SO 3(г) = CaSO 4(тв) , ∆G ° 298 хр = -348,0 кДж.

66. Какой из оксидов, Na 2 O, CaO или MgO, проявляет более сильные основные свойства:

СаО (тв) + СО 2(г) = СаСО 3(тв) , ∆G ° 298 хр = -134,0 кДж,

MgO (тв) +CO 2 (г) =MgCO 3 (тв) , ∆G ° 298 хр = -67,0 кДж,

Na 2 O (тв) +CO 2 (г) =Na 2 CO 3(тв) , ∆G ° 298 хр = -277,0 кДж

67. Для реакций:

Al 2 O 3(тв) + 3SO 3(г) = Al 2 (SO 4) 3(тв) , ∆G ° 298 хр = -380,5кДж,
ZnO (тв) + SO 3(г) = ZnSO 4(тв) , ∆G ° 298 хр = -188,5 кДж

указать, какой из оксидов проявляет более сильные основные свойства

68. На основании реакций:

А1 2 О 3(тв) + 3SO 3(г) = Al 2 (SO 4) 3(тв) , ∆G ° 298 хр = -380,5кДж,

А1 2 О 3(тв) + Na 2 O (тв) = 2NaAlO 2(тв) , ∆G ° 298 хр = -199,0 кДж указать:

а) характер А1 2 О 3 (основной, амфотерный или кислотный);

б) какой характер (кислотный или основной) выражен ярче?

69.Исходя из значения ∆G

2Rb (тв) +1/2О 2(г) = Rb 2 О (тв) ,

2Ag (тв) +1/2О 2(г) =Ag 2 О (тв) ,

а) рубидий или серебро имеет большее сродство к кислороду;

б) какой из оксидов является более устойчивым?

70. Исходя из значения ∆G ° 298 для следующих процессов:

GeO 2(тв) + Ge (тв) = 2GeO (тв) , ∆G ° 298 хр = 41,9 кДж,

SnO 2(тв) + Sn (тв) = 2SnO (тв) , ∆G ° 298 хр = 6,3кДж,

РbО 2(тв) + Рb (тв) = 2РbО (тв) , ∆G ° 298 хр = -158,8 кДж, указать:

а) возможность протекания реакций в прямом направлении;

б) наиболее характерную степень окисления данных элементов.

71. На основании следующих данных:

Рb (тв) + F 2(г) = PbF 2(тв) , ∆G ° 298 хр = -620,5 кДж,

Рb (тв) + С1 2(г) = РbС1 2(тв) , ∆G ° 298 хр = -314,4 кДж,

Рb (тв) + Вr 2(ж) = РbВr 2(тв) , ∆G ° 298 хр = -260,78 кДж,

Рb (тв) +I 2(тв) = РbI 2(тв) , ∆G ° 298 хр = -174,01 кДж

ответить на следующие вопросы:

а) возможно ли синтезировать галиды свинца из простых веществ?
б) какой из галогенов проявляет наиболее сильные окислительные свойства?
в) какой из галидов обладает наибольшей устойчивостью к разложению?
г) в какой из реакций изменение энтропии будет наименьшим?
72. Даны ∆G ° 298 o6 p (кДж/моль) галидов калия и меди:
КF (тв) -534,2 CuF (тв) - 231,3

КС1 (тв) -408,5 CuCl (тв) -119,4

КВr (тв) -379,6 CuBr (тв) -102,2

KI (тв) - 322,6 CuI (тв) -71,2

Написать уравнения реакций образования галидов, соответствую-щие этим значениям, и сделать следующие выводы для ст.усл.:

а) можно ли синтезировать данные галиды из простых веществ?

б) как изменяется относительная устойчивость галидов калия и меди?

в) калий или медь обладают более сильными восстановительными свойствами?

г) какой из галогенов обладает более сильными окислительными свойствами?

д) какой из галидов обладает более сильными восстановительными свойствами?

73. На основании следующих данных:

Mg (тв) + 1/2О 2(г) + Н 2 О (ж) = Mg(OH) 2(тв) , ∆G ° 298 хр = -598 кДж,

Сu (тв) +1/2О 2(г) + Н 2 О (ж) = Сu(ОН) 2(тв) , ∆G ° 298 хр = -120 кДж,

Аu (тв) + 3/4О 2 (г) +3/2Н 2 О (ж) = Аu(ОН) 3(тв) , ∆G ° 298 хр = 66 кДж

определить:

а) какие из металлов способны окисляться при стандартных условиях?

б) какой из гидроксидов обладает наибольшей устойчивостью?

в) какой из металлов является наиболее сильным восстановителем?

74. Пересчитайте ∆G ° 298 хр на 1 эквивалент оксида:

Na 2 O (тв) +Н 2 О (ж) = NaOH (тв) , ∆G ° 298 хр = -147,61 кДж,

MgO (тв) + H 2 O (ж) = Mg(OH) 2(тв), ∆G ° 298 хр = -27,15 кДж,

А1 2 О 3(тв) + ЗН 2 О (ж) = 2А1(ОН) 3(тв) , ∆G ° 298 хр = 18,27 кДж

и определите, какой из оксидов имеет наиболее сильные основные свойства.

75. Даны ∆G ° 298 o6 p йодидов металлов:

NaI MgI 2 А1I 3

G ° 298 o6 p (кДж/моль) -285 -360 -314

Напишите уравнения реакций образования иодидов, пересчитайте ∆G ° 298 обр на 1 эквивалент соединения и сделайте следующие выводы:

а) как изменяется устойчивость иодидов к нагреванию в данном ряду;

б) как изменяется восстановительная активность соответствующих им металлов?

76. Даны ∆G ° 298 o6 p соединений р - элементов V группы с водородом

G ° 298 o6 p (кДж /моль) -17 13,39 156

Напишите уравнения реакций образования соединений, соответствующих этим величинам, и сделайте следующие выводы:

а) как изменяется устойчивость данных соединений;

б) как изменяется окислительная способность данных р - элементов;

в) как изменяется в этом ряду восстановительная способность соединений?

77. Даны ∆G ° 298 o6 p соединений неметаллов

PH 3(г) H 2 S (г) НС1 (г)

G ° 298 o6 p (кДж /моль) 13,39 -34 -96

Напишите уравнения реакций образования этих соединений и сделайте вывод: как изменяется устойчивость данных водородных соединений?

78. Изменение энтропии при плавлении 1 моль СН 3 СООН равно

40,2 Дж/моль×К. Температура плавления кислоты равна 16,6°С. Рассчитать теплоту плавления в Дж/г и в Дж/моль.

79. От лития к азоту энтропия меняется следующим образом:

Li (тв) Be (тв) B (тв) C (алмаз) N 2(г)

S ° 298 (Дж/моль∙К) 28,07 9,55 5,87 2,83 191,5

d , г/см 3 при 20°С 0,534 1,848 2,340 3,515 -

Объясните, почему энтропия сначала уменьшается, а у азота резко возрастает?

80. Чему равно изменение энтропии (S ° 298) при следующих фазовых переходах:

а) при плавлении 1 моля бензола С 6 Н 6 , если t пл = 5,49°С, а ∆Н ° пл = 126,54 Дж/г?

б) при плавлении 1 моля алюминия в точке плавления при t пл = = 660°С, если ∆Н ° пл = 10,43 кДж/молъ?

в) при испарении 2 молей хлористого этила C 2 H 5 CI, если t кип = = 14,5°С, а ∆Н ° исп = 377,1 Дж/г?

г) при испарении 2 молей жидкого кислорода в точке кипения, если

t кип = -I93°C, a ∆Н ° исп = 6829,7 Дж/моль?

д) при испарении 1,1 моля воды при 25°С, если мольная теплота испарения при этой температуре ∆Н ° исп = 44,08 кДж/моль?

е) при переходе 1г кварца (SiO 2) из β - в α-модификацию при t = 573°C, если ∆Н ° перехода равно 7,54 кДж/моль?;

ж) при плавлении 1 моля сурьмы, если t пл = 630°С, а ∆Н ° пл = =20,11 кДж/моль?

з) при плавлении 100 г хлорида натрия, при t = 800 °C, если ∆Н ° пл = 30251 Дж/моль?
и) при плавлении 1 моля льда, при t ° плавления, если ∆Н ° пл = = 335,2 Дж/г?

к) при плавлении 0,05 кг свинца, если t пл =327,4°C, а ∆Н ° пл = =23,04 Дж/г?

л) при испарении 1000 г воды при 25°С, если мольная теплота испарения при этой температуре ∆Н ° исп = 44,08 кДж/молъ?

82. Теплота испарения бромбензола при Т = 429,8 К равна 241 Дж/г. Определить ∆S ° при испарении 1,25 моля бромбензола.

83. Изменение энтропии при плавлении 100 г меди равно 1,28 Дж/К. Рассчитать удельную теплоту плавления меди, если температура ее плавления равна 1083°С.

ЛАБОРАТОРНЫЕ РАБОТЫ ПО ТЕМЕ "ТЕРМОХИМИЯ"

Многие процессы протекают без подвода энергии от внешнего источника. Такие процессы называют самопроизвольными .

Примерами самопроизвольных процессов могут служить падение камня с высоты, течение воды под уклон, переход теплоты от более нагретого тела к менее нагретому.

Человеческий опыт показал, что самопроизвольные процессы в обратном направлении не могут протекать самопроизвольно, т.е. самопроизвольно не потечет вода в гору, камень не полетит вверх, а теплота не перейдет от холодного тела к нагретому.

(хотя с точки зрения первого закона термодинамики, одинаково правдоподобны как процесс перехода тепла от горячего тела к холодному, так и обратный процесс, т.е. переход от тепла от холодного тела к горячему, ибо и в том и в другом случаях соблюдается закон сохранения и превращения энергии)

Многие химические реакции также протекают самопроизвольно, например , образование ржавчины на металлах, реакция натрия с водой, растворение соли в воде и др.

Чтобы понимать химические процессы и управлять ими, необходимо знать ответ на вопрос: каковы движущие силы и критерии самопроизвольных процессов?

Одной из движущих сил химической реакции является рассмотренное нами ранее уменьшение энтальпии системы, т.е. экзотермический тепловой эффект реакц ии.

Как показывает опыт, большинство экзотермических реакций (?Н <0) протекают самопроизвольно. – Почему?

Однако условие?Н <0 не может быть критерием! Самопроизвольного течения реакций, так как существуют самопроизвольные эндотермические химические реакции, у которых?Н >0, например, взаимодействие метана с водяным паром при высокой температуре.

Следовательно, кроме уменьшение энтальпии системы (энтальпийного фактора) имеется другая движущая сила самопроизвольного процесса.

Такой силой является стремление частиц (молекул, ионов, атомов) к хаотичному движению, а системы – к переходу от более упорядоченного состояния к менее упорядоченному.

Например, представим пространство, в которое помещено вещество, в виде шахматной доски, а само вещество – в виде зерен. Каждая клетка доски соответствует определенному положению и уровню энергии частиц. Если частицы распределяются по всему пространству, то вещество находится в газовом состоянии; если частицы займут только небольшую часть пространства, то вещество перейдет в конденсированное состояние. Все высыпанные зерна распределяются на доске более или менее равномерно. На каждой клетке доски окажется определенное число зерен. Положение зерен после каждого рассыпания соответствует микросостоянию системы, которое можно определить как мгновенный снимок, фиксирующий расположение частиц в пространстве. Каждый раз мы получаем систему в одном и том же макросостоянии. Число подобных микросостояний, удовлетворяющих ожидаемому макросостоянию (при достаточно большом количестве частиц) очень велико.

Например , коробка с ячейками, в которой находятся шары: так в 9 ячейках находятся 4 шара – это модель макросистемы . Шары по ячейкам можно разложить 126 различными способами, каждый из которых является микросостоянием.

Число микросостояний, посредством которых реализуется данное макро состояние, связано с термодинамической вероятностью W . Энтропия определяется термодинамической вероятностью : она тем выше, чем больше способов реализации макросостояния .

Поэтому считают, что энтропия – мера неупорядоченности системы.

Математически связь энтропии с числом микросостояний установил Л. Больцман в конце 19 века, выразив ее уравнением:

S = k * ln W ,

где W - термодинамическая вероятность данного состояния системы при определенном запасе внутренней энергии U и объеме V ;

k постоянная Больцмана, равная 1,38*10 -23 Дж/К.

Пример с шарами, конечно, очень нагляден, но он коварен, так как на основании его интуитивно под упорядоченностью системы иногда понимают расположение частиц в пространстве .

Однако, в действительности под термодинамическим состоянием подразумевается, главным образом, расположение частиц (например, молекул) по возможным уровням энергии (каждый вид движения –колебательное, вращательное, поступательное- характеризуется своим уровнем энергии).

Энтропия также зависит от массы частиц и их геометрического строения.

Кристаллы имеют наименьшую энтропию (так их частицы могут колебаться только около некоторого состояния равновесия), а газы – наибольшую, так как для их частиц возможны все три вида движения. S T

Всякому веществу можно приписать определенное абсолютное значение энтропии.

Конечно, энтропии веществ обычно не рассчитывают на основании уравнения Больцмана. Их определяют по уравнению классической термодинамики с учетом теплоемкости данного вещества и теплот фазовых переходов.

Значение энтропии различных веществ при 298 К и давлении 1 атм. (S 0 298) являются табличными данными.

На основании данных о стандартной энтропии веществ можно рассчитать изменение энтропии различных химических процессов. Поскольку энтропия является функцией состояния , то ее изменение не зависит от пути процесса и равно разности энтропий продуктов реакций и исходных веществ:

?S 0 реакц .= ? ? i S 0 - ? ? jS 0

Во многих случаях изменение энтропии процесса можно оценить качественно:

· Так, энтропия всегда увеличивается при переходе из конденсированного состояния (твердого или жидкого) в парообразное.

· Энтропия всегда возрастает при растворении твердого или жидкого вещества, причем, чем больше степень диссоциации, тем заметнее увеличивается энтропия. При растворении газов, напротив, энтропия уменьшается.

· Чем сложнее состав вещества, тем больше энтропия. Например, для оксидов марганца МnO , Mn 2 O 3, Mn 3 O 4 энтропия равна соответственно 61,50; 110,5; 154,8 кДЖ/моль*К.

· В химических реакциях энтропия возрастает, если в результате их увеличивается количество газообразных веществ. Например, в реакции термического разложения карбоната кальция:

СаСО 3(т) = СаО (т) + СО 2(г)

Второе начало (закон) термодинамики регламентирует принципиальную возможность протекания различных процессов. В середине 19 века этот закон был сформулирован в виде нескольких постулатов. Наиболее известные из них следующие:

· Невозможно осуществить перенос тепла от более холодного тела к более горячему, не затрачивая на это работу .

(Р. Клаузиус)

и с использованием понятия энтропии:

· В изолированных системах самопроизвольно идут процессы, при которых происходит увеличение энтропии. (? S изолир. >0)

Всякая изолированная система самопроизвольно стремиться принять состояние, характеризующееся максимальной термодинамической вероятностью.

На основании уравнения Больцмана можно показать, что любой необратимый процесс, самопроизвольно протекающий в изолированной системе, характеризуется увеличением энтропии. Пусть в изолированной системе находятся два химически не взаимодействующих газа, например гелий и неон, при одинаковых условиях, разделенные перегородкой. В этом состоянии термодинамическая вероятность системы w 1 . При удалении перегородки газы начинают самопроизвольно диффундировать друг в друга до тех пор, пока молекулы каждого газа равномерно не распределятся по всему объему. В конечном состоянии термодинамическая вероятность w 2 . Система самопроизвольно перешла из менее вероятного состояния в более вероятное (w 2 > w 1). Энергетический обмен системы с внешней средой отсутствует, следовательно, единственная причина протекания этого процесса - увеличение энтропии.

Другими словами, процессы протекают самопроизвольно лишь в сторону менее упорядоченного состояния, т.е. нарастания беспорядка. Именно поэтому испарение жидкости, растворение соли в воде или смешение газов происходит самопроизвольно, а вместе с тем обратные процессы без обмена энергией с окружающей средой невозможны.

Следовательно, увеличение энтропии является критерием самопроизвольного протекания процессов только в изолированных системах, т.е. не обменивающихся энергией с внешней средой, а это довольно редкий случай. В открытых и замкнутых системах, кроме изменения энтропии, на направление процесса влияет еще и изменение энтальпии.

Вопрос 5. Энергия Гиббса и Гельмгольца. Критерий самопроизвольного протекания процессов.

Какие же процессы идут самопроизвольно в неизолированных системах? При взаимодействии водорода с кислородом самопроизвольно образуется вода:

2Н 2(г) +О 2(г) = 2Н 2 О (г)

В этой реакции энтропия уменьшается, но выделяется большое количество теплоты (? S <0, ?Н <0), т.е. самопроизвольному протеканию процесса способствует уменьшение энтальпии.

Самопроизвольно происходит и растворение хлорида аммония в воде:

NH 4 Cl (тв) + aq = NH 4 + (р) + Cl - (р)

Этот процесс сопровождается понижением температуры (поглощение теплоты) и увеличением энтропии (? S > 0, ?Н > 0), причем главную роль играет последний фактор.

В термодинамике вводится новая функция, связывающая две предыдущие величины – энергия Гиббса.(G )

G = H – TS

Основная ценность этой функции заключается в том, что ее изменение при постоянной температуре и давлении определяет самопроизвольность процессов.

? G = ( ? H – T ? S ) <0

· В классической термодинамике под энтропией понимают такое свойство системы, изменение которого при обратимом процессе численно равно отношению теплоты к температуре протекания процесса:

? S = Q/T ; T ? S=Q

· В термодинамике обратимым называют такой процесс, который проводится бесконечно медленно и так, чтобы система находилась все время практически в состоянии равновесия.

Таким образом, величина ? G характеризует ту часть изменения внутренней энергии, которая может быть превращена в полезную работу.

При условии постоянства объема пользуются термодинамической функцией, которая называется Энергией Гельмгольца (F ):

F = U – T ? S

В изохорном процессе полезная работа определяется изменением энергии Гельмгольца, а условием самопроизвольности процесса является ее уменьшение ? F <0.

В химии обычно пользуются энергией Гиббса, поскольку чаще всего химические реакции проводят при постоянном (атмосферном) давлении.

Итак, в неизолированной системе процесс преимущественно происходит самопроизвольно, если ему соответствует уменьшение энергии Гиббса. (? G <0.)

При ? G =0 состояние системы соответствует равновесию.

При ? G > 0 -процесс преимущественно не протекает в прямом направлении

Анализ уравнения ? G =( ? H – T ? S ) показывает, что знак величины ? G , а значит, термодинамическая возможность самопроизвольного протекания реакции зависят от двух факторов: энтальпийного (энергетического) и энтропийного . С одной стороны, система стремится занять прийти к минимальному уровню энергии, выделив часть ее в виде теплоты или работы (? H <0). С другой стороны, система стремится занять наиболее вероятное состояние, характеризующееся максимумом молекулярного беспорядка, т.е. максимумом энтропии (? S >0). В этом случае энтальпийный и энтропийный факторы действуют в направлении, благоприятствующему протеканию реакции.

Рассмотрим варианты:

а) ? H <0; ? S >0; в этом случае? G <0 при всех значениях температуры, процесс термодинамически возможен при любой температуре.

б) ? H <0; ? S <0; в этом случае? G <0 при Т< , т.е. при реакция термодинамически возможна при при сравнительно низкотемпературном режиме;

в) ? H >0; ? S >0; в этом случае? G <0 при Т> , процесс возможен при высоких температурах;

г) ? H >0; ? S <0; в этом случае? G <0 - оба фактора действуют в неблагоприятном направлении, реакция термодинамически невозможна при любых значениях температур.

Первый способ расчета аналогичен методу оценки изменения энтальпии реакции по табулированным энтальпиям образования различных веществ. В таблицах сведены и величины ? G 0 обр.298 и точно также принято, что для простых веществ ? G 0 обр.298 =0

? G 0 реакц. = ?? i ? G 0 обр.прод. - ?? j ? G 0 обр.исх.

i j

Второй способ основан на расчете сначала величин ? H реакц.. и ? S реакц. для данного процесса, а потом исходя из них – величины ? G 0 реакц по формуле:

? G 0 реакц = ? H 0 реакц. – 298 ? S 0 реакц.

Данный способ хорош тем, что позволяет оценить, как изменится знак ? G 0 реакц при изменении температуры.

Хотя энтальпия и энтропия веществ зависят от температуры, но для реакции изменение этих величин незначительно, поэтому приближенно считают, что в некотором интервале температур ? H реакц.. и ? S реакц величины практически постоянные.

Для простых веществ, находящихся в термодинамически устойчивых состояниях ? G 0 =0.

Изменения энтальпии в ходе химической реакции не может быть критерием возможности или невозможности осуществления данной реакции, ибо реакции могут самопроизвольно протекать не только при выделении, но и при поглощении тепла в ходе химической реакции. Рассмотрение этого вопроса в термохимии основывается на втором законе термодинамики, при этом используются понятия энтропии вещества S, участвующих в реакции, и энтропии химической реакции ΔS. Понятие энтропии может быть трактовано как в терминах степени упорядоченности системы, так и в терминах статистической термодинамики (уравнение Больцмана).

Универсальным критерием возможности самопроизвольного протекания реакции является такая функция состояния системы, как свободная энергия Гиббса ΔG. Если для некоторой реакции ΔG < 0, то такая реакция может протекать самопроизвольно, если же ΔG > 0, то - нет. Данное утверждение представляет собой термодинамическое услoвие сaмoпрoизвoльнoгo прoтeкaния химичeской реакции. Если для некоторого химического процесса ΔG = 0, то состояние системы называется равновесным, оно характеризуется константой равновесия K равн = 1.

На термодинамическую систему, находящуюся в состоянии химического равновесия, оказывает влияние изменение термодинамических параметров: температуры, давления, количества вещества. Система при этом соответственным образом перестраивается, что может быть описано принципом Ле-Шателье.

Термины и определения

Термодинамической системой называется такая совокупность тел, в которой возможен тепло- и массообмен между ними. Частным случаем термодинамической системы является химическая система, в которой протекают химические процессы.

К термодинамическим параметрам (или переменным) системы относятся: давление p, объем V, температура T, количество молей вещества ν. Иногда к ним относят и количество теплоты Q, подводимое к системе или отводимое от нее извне. Основные термодинамические параметры связаны между собой известным уравнением Менделеева-Клапейрона: pV = ν RT.

К термодинамическим функциям состояния системы относятся: внутренняя энергия U, энтальпия H, теплоемкость при постоянном давлении c p , теплоемкость при постоянном объеме c v , энтропия S, свободная энергия Гиббса G.

Первый закон термодинамики утверждает, что сообщенная системе теплота расходуется на приращение внутренней энергии системы и на совершение работы против внешних сил, в частности на расширение системы:

Внутренняя энергия U есть общий запас энергии в системе, за исключением потенциальной и кинетической энергии системы как целого. Внутренняя энергия системы определяется энергией движения молекул, энергией дви­жущихся электронов в атомах, энергией внутримолекулярных коле­баний атомов и атомных групп, электрическими взаимодействиями, внутриядерной энергией и т.д. Поэтому определить абсолютное значение внутренней энергии не представляется возможным.

Теплота Q, подведенная извне или отведенная от системы, представляет собой термодинамическую переменную. Вызванное этим изменение состояния системы характеризуется изменением соответствующей функции состояния, называемой энтальпией системы Н: ΔН = ΔU + pΔV.

Как и в случае внутренней энергии, определить абсолютное значение энтальпии не представляется возможным.

Тепловым эффектом химической реакции называется изменение энтальпии химической системы ΔН в результате прохождения реакции.

Эндотермической реакцией называется реакция, сопровождаемая поглощением энергии, для нее характерно положительное значение теплового эффекта при данной температуре ΔН > 0.

Экзотермической реакцией называется реакция, сопровождаемая выделением энергии, для нее характерно отрицательное значение теплового эффекта при данной температуре ΔН < 0.

Под стандартным условиями протекания химической реакции понимают следующие: р = 1,013·10 5 Па, Т = 298 К, ν = 1 моль. Стандартные функции состояния системы ΔНº 298 , ΔUº 298 , ΔGº 298 выражаются в системе СИ в кДж/моль.

Стандартная энтальпия образования ΔНº обр.298 , или ΔНº f .298 , есть тепловой эффект реакции образования сложного вещества из простых, приведенный к стандартным условиям. Энтальпии образования простых веществ считаются равными нулю.

Первый закон термохимии : Тепловой эффект реакции образования сложного вещества из простых равен по абсолютному значению, но противоположен по знаку тепловому эффекту реакции разложения данного соединения на простые вещества: ΔНº обр = –ΔНº разл.

Второй закон термохимии : Тепловой эффект химической реакции, протекающей при постоянном давлении или при постоян­ном объеме, не зависит от числа, последовательности и характера ее промежуточных стадий, но определяется только начальным и конечным состоянием системы.

Первое следствие из второго закона термохимии: Тепловой эффект химической реакции равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования реагентов при данной температуре:

ΔН х.р = ΣΔН обр. прод – ΣΔН обр реаг.

Энтальпи образования простых веществ принимается равной нулю.

Второе следствие из второго закона термохимии: Тепловой эффект химической реакции равен сумме энтальпий сгорания реагентов реакции за вычетом суммы энтальпий сгорания продуктов при данной температуре:

ΔН х.р = ΣΔН сгор реаг – ΣΔН сгор. прод.

Энтальпия сгорания негорючих веществ принимается равной нулю.

Под теплоемкостью понимают количество теплоты, которое необходимо сообщить системе, чтобы повысить ее температуру на 1 К. Различают теплоемкость при постоянном давлении c p = ΔН/ΔT, теплоемкость при постоянном объеме c v = ΔU/ΔT. Они связаны между собою таким образом:

c p = c v + R .

Термохимический закон Кирхгофа : Тепловой эффект химической реакции при некоторой температуре ΔН Т1 связан с тепловым эффектом той же реакции при иной температуре ΔН Т2 через изменения теплоемкостей продуктов и реагентов реакции Δс р следующим образом:

ΔН Т2 = ΔН Т1 + ΣΔс р · ΔT.

Суммарный, или общий тепловой эффект реакции, включает в себя вклад собственно энтальпии химической реакции ΔН х.р. , изменения энтальпии в результате изменения температуры ΔН Т и изменения энтальпии при фазовых переходах в системе ΔН ф.п. : ΔН = ΔН х.р. + ΔН Т + ΔН ф.п.

Наиболее существенное значение для термохимии имеет следующая формулировка второго закона термодинамики : Изменение энтропии при любом изменении системы равно отношению притока тепла в систему Q (т.е. ΔН) к абсолютной температуре Т: ΔS = ΔН/Т.

Энтропия S есть количественная мера степени неупорядоченности системы. Согласно второму закону термодинамики, энтропия определяется через ее изменение при изменении энтальпии системы. Различают энтропию конкретного вещества в определенных условиях, например, в стандартных ΔSº, и изменение энтропии в результате некоторого процесса, в частности, химической реакции в стандартных условиях ΔSº х.р. . Последняя может быть найдена из выражения, аналогичного первому следствию из второго закона термохимии: ΔS х.р = ΣΔSº прод – ΣΔSº реаг.

Уравнением Больцмана дается статистическое представление энтропии:

где R есть универсальная газовая постоянная, а W - термодинамическая вероятность осуществления данного состояния системы (количество микросостояний, которыми может осуществиться данная система).

Свободная энергия Гиббса G есть функция состояния системы, включающая в себя энтальпию и энтропию, ее изменение в ходе химического процесса дается выражением: ΔG = ΔН – ТΔS .

Термодинамическое услoвие сaмoпрoизвoльнoгo прoтeкaния химичeской реакции состоит в требовании уменьшения свободной энергии Гиббса: Если для некоторой реакции ΔG < 0, то такая реакция может протекать самопроизвольно в прямом направлении, если же ΔG > 0, то - нет.

Состояние химического равновесия характеризуется константой равновесия химической реакции, которая равна отношению констант скоростей прямой и обратной реакций: K р = k прям / k обр.

Константа равновесия реакции связана со свободной энергией Гиббса: ΔG = – RT · ln K р. Если K р = 1, то ΔG = 0, и протекание реакции равновероятно в обе стороны. Если K р > 1, то ΔG < 0, и реакция смещена в сторону образования продуктов. Если K р < 1, то ΔG > 0, реакция протекает преимущественно в сторону образования реагентов, то есть преобладает обратная реакция.

Принцип Ле-Шателье состоит в следующем: Если на термодинамическую систему, находящуюся в состоянии химического равновесия, оказывается внешнее воздействие, то система перестраивается таким образом, чтобы эффект внешнего воздействия был уменьшен.

I закон термодинамики устанавливает взаимосвязь между внутренней энергией, теплотой и работой и позволяет рассчитывать тепловые эффекты различных процессов, но при этом обладает одним существенным недостатком: он ничего не говорит о направлении самопроизвольного протекания процесса. Действительно, с точки зрения I закона термодинамики барон Мюнхгаузен, пытаясь вытащить себя и лошадь из болота за косичку, затратив некоторое количество энергии, не сделал ничего предосудительного. Можно привести и другой пример. Процесс нагревания-охлаждения воды является обратимым. Воду в чайнике можно довести до кипения при помощи электрического тока, однако при остывании воды ток в цепи не возникает.

Ответ даёт II закон термодинамики .

Любой самопроизвольно протекающий процесс (химическая реакция) реализуется как результат соотношения двух основных тенденций:

1) стремление системы свести к минимуму свой запас внутренней энергии, выделить избыток этой энергии в окружающую среду – принцип Бертло-Томсена;

2) стремление системы перейти в наиболее вероятное , т.е. наиболее устойчивое состояние, характеризующееся максимальной степенью беспорядка, хаотичности.

1-я тенденция учитывает энтальпийный фактор и проявляется в том, что большинство самопроизвольно протекающих реакций имеет экзотермический характер, DH р-я < 0.

2-я тенденция учитывает энтропийный фактор, ΔS > 0.

Энтропия S – функция состояния системы, определяющая её термодинамическую вероятность и в этом смысле устойчивость данного состояния.

Физический смысл энтропии установила статистическая термодинамика. Согласно уравнению Больцмана:

, (9)

где - постоянная Больцмана, R – универсальная газовая постоянная, N A – число Авогадро; W - число способов, которыми система может осуществить свое макросостояние, или, другими словами, это термодинамическая вероятность данного макросостояния системы, которая определяется числом способов и вариантов распределения микрочастиц (молекул, атомов, ионов и т.д.).

Статистическая трактовка понятия энтропии означает, что в отличие от энергии, которая присуща каждой отдельной частице, энтропия отражает свойства набора частиц. Отдельная частица энтропией не обладает.

Таким образом, энтропия характеризует неупорядоченность, вероятность существования системы и является таким же свойством вещества или системы , зависящим от их природы и состояния, как температура, давление, внутренняя энергия и энтальпия.

Как и для других термодинамических функций состояния, в расчётах используют стандартные значения энтропии S (Дж/K) и S 0 (Дж/моль×K).

Как и энергия, энтропия не относится к числу экспериментально определяемых величин. В обратимом процессе, протекающем в изотермических условиях, изменение энтропии равно:

Это означает, что при необратимом протекании процесса энтропия возрастает благодаря переходу части работы в теплоту.

Таким образом, в обратимых процессах система совершает максимально возможную работу. При необратимом процессе система всегда совершает меньшую работу.

Переход работы в теплоту в необратимом процессе означает переход от упорядоченной формы материи к неупорядоченной. Отсюда и возникает трактовка энтропии как меры беспорядка в системе:

При увеличении беспорядка в системе энтропия возрастает и, наоборот, при упорядочивании системы энтропия уменьшается.

Внеобратимых процессах, сопровождающихся увеличением S, энтропия производится (возникает), это происходит, например, при выравнивании концентраций.

Энтропия закрытой системы может изменяться и при обмене системы с окружающей средой теплотой , т.е. только энергией.

Изменение энтропии в результате теплообмена называется потоком энтропии и определяется уравнением:

Где Q ‑ теплота, которой обменивается система с внешней средой при температуре Т.

Общее изменение энтропии системыопределяется суммой производимой энтропии (в необратимом процессе) и потока энтропии (приобретаемой или выделяемой в результате теплообмена). В обратимых процессах энтропия не производится и всё её изменение определяется только потоком энтропии.

Большинство протекающих в природе процессов является необратимыми и сопровождаются производством энтропии.

В процессе испарения воды энтропия увеличивается, в процессе кристаллизации - уменьшается. В реакциях разложения энтропия увеличивается, в реакциях соединения - уменьшается.

Если обратимый процесс протекает в изобарно-изотермических условиях, то должны выполняться следующие соотношения:

От соотношения величин, стоящих в левой и правой части последнего выражения, зависит направление самопроизвольного протекания процесса.

Если процесс проходит в изобарно-изотермических условиях, то общая движущая сила процесса называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (DG) :

Уравнение Гиббса:

ΔG = ΔH – T×ΔS (16)

Энтальпийный энтропийный

Фактор фактор

Энергия Гиббса измеряется в Дж или в кДж.

Знак DG позволяет определить направление самопроизвольного протекания процесса:

Если DG < 0, то процесс в принципе осуществим, в данных условиях он теоретически может идти самопроизвольно, а абсолютное значение разности ΔН ‑ ТΔS определяет движущую силу этого процесса.

Если DG > 0, то в данных условиях реакция самопроизвольно протекать не может, и осуществима обратная реакция, для которой ΔG < 0.

Если DG = 0, реакция обратима, это критерий состояния химического равновесия.

Анализ соотношения энтальпийного и энтропийного факторов в уравнении (16) позволяет сделать следующие заключения:

1. При низких температурах преобладает энтальпийный фактор, и самопроизвольно протекают, в основном, экзотермические процессы;

2. При высоких температурах решающую роль играетэнтропийный член уравнения, возрастающий в реакциях разложения. Поэтому при достаточно больших температурах не могут существовать сложные системы.

Предложенный подход позволяет целенаправленно подбирать условия, при которых процесс протекает в заданном направлении.

На протяжении всей жизни мы постоянно сталкиваемся с физическими и химическими явлениями. Природные физические явления для нас столь привычны, что мы уже давно не придаём им особого значения. Химические реакции постоянно протекают в нашем организме. Энергия, которая выделяется при химических реакциях, постоянно используется в быту, на производстве, при запуске космических кораблей. Многие материалы, из которых изготовлены окружающие нас вещи, не взяты в природе в готовом виде, а изготовлены с помощью химических реакций. В быту для нас не имеет особого смысла разбираться в том, что же произошло. Но при изучении физики и химии на достаточном уровне без этих знаний не обойтись. Как отличить физические явления от химических? Существуют ли какие-либо признаки, которые могут помочь это сделать?

При химических реакциях из одних веществ образуются новые, отличные от исходных. По исчезновению признаков первых и появлению признаков вторых, а также по выделению или поглощению энергии мы заключаем, что произошла химическая реакция.

Если прокалить медную пластинку, на её поверхности появляется чёрный налёт; при продувании углекислого газа через известковую воду выпадает белый осадок; когда горит древесина, появляются капли воды на холодных стенках сосуда, при горении магния получается порошок белого цвета.

Выходит, что признаками химической реакций являются изменение окраски, запаха, образование осадка, появление газа.

При рассмотрении химических реакций, необходимо обращать внимание не только на то, как они протекают, но и на условия, которые должны выполняться для начала и течения реакции.

Итак, какие же условия должны быть выполнены для того, чтобы началась химическая реакция?

Для этого прежде всего необходимы реагирующие вещества привести к соприкосновению (соединить, смешать их). Чем более измельчены вещества, чем больше поверхность их соприкосновения, тем быстрее и активнее протекает реакция между ними. Например, кусковой сахар трудно поджечь, но измельчённый и распылённый в воздухе он сгорает за считанные доли секунды, образуя своеобразный взрыв.

С помощью растворения мы можем раздробить вещество на мельчайшие частицы. Иногда предварительное растворение исходных веществ облегчает проведение химической реакции между веществами.

В некоторых случаях соприкосновение веществ, например, железа с влажным воздухом, достаточно, чтобы произошла реакция. Но чаще одного соприкосновения веществ для этого недостаточно: необходимо выполнение ещё каких-либо условий.

Так, медь не вступает в реакцию с кислородом воздуха при невысокой температуре около 20˚-25˚С. Чтобы вызвать реакцию соединения меди с кислородом, необходимо прибегнуть к нагреванию.

На возникновение химических реакций нагревание влияет по – разному. Для одних реакций требуется непрерывное нагревание. Прекращается нагревание – прекращается и химическая реакция. Например, для разложения сахара необходимо постоянное нагревание.

В других случаях нагревание требуется лишь для возникновения реакции, оно даёт толчок, а далее реакция протекает без нагревания. Например, такое нагревание мы наблюдаем при горении магния, древесины и других горючих веществ.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.